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Electron Backscatter Diffraction (EBSD) Analysis of Cracking in 
Polycrystalline Materials
Introduction
It is not always apparent from a standard Scanning Electron Microscope (SEM) micrograph whether a particular boundary path
follows grain boundaries in the structure or has a transgranular component. Orientation Imaging Microscopy (OIM™) has the
unique capability of differentiating grains from one another based on crystallographic orientation instead of relying on etching
or other contrast enhancement approaches. The improved capability of OIM™ to differentiate grains enables an unambiguous
determination of whether a given crack segment is transgranular or intergranular. In addition, the crack path is particularly
evident in Image Quality (IQ) maps. This is because in the crack the diffraction patterns are generally non-existent or at best
very weak.

Grain Boundary Distributions
For cracks propagating along grain boundaries, it may be
helpful to identify whether there is a unique character shared
by the cracked boundaries versus the overall distribution
of boundaries. Consider the example shown in Figure 2
from copper interconnect lines undergoing thermal stress.
Misorientations were measured across both the voided and
unvoided grain boundaries using OIM™. From the two
distributions it is evident that low angle boundaries are resistant
to void formation. There is also a spike in the distribution of
voided boundaries at 52° indicating that these boundaries are
susceptible to void formation. Similar types of analysis have
been applied to fractures in lead free solder alloys.

Taylor Factor Mapping
OIM™ can be used for even more complex analysis of the
microstructure. For example, a Taylor factor map can be
constructed. The Taylor factor shows the predicted yield
response of a grain relative to the stress state and grain
orientation. In Figure 3, the grains in blue are oriented for
relatively easy slip, whereas the grains shaded red tend to be
resistant to yielding. Boundaries separating grains with a high
degree of mismatch in Taylor factor may be more susceptible
to intergranular fracture. Grains with high Taylor factors will
be less likely to yield and may be susceptible to transgranular
fracture. Note the crack path in  Figure 3 – there appears to be
some evidence that the path is intergranular where there is a
strong mismatch in Taylor factor. The challenge of applying
such analysis to lead free solders is properly identifying the
stress state. In this example, the stress state is uniaxial tension
in the horizontal direction, aligned with the experimental testing
axis.    

Figure 1. Image from the Secondary Electron Detector (SED) of a fatigue
crack in a nickel superalloy (top). SED image overlaid with grain
boundaries as determined by OIM™ (middle). Grains as determined by
OIM™ delineated by random colors overlaid on a gray scale map based on
a parameter describing the Image Quality (IQ) of the individual diffraction
patterns (bottom).

Figure 2. Distribution of voided and unvoided grain boundaries in copper
interconnect lines. Nucci, J. A., R. R. Keller, D. P. Field and Y. Shacham-
Diamand (1997). "Grain boundary misorientation angles and stress-induced
voiding in oxide passivated copper interconnects." Applied Physics Letters
70: 1242-1244.
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Figure 3. Taylor factor map overlaid on an IQ map. The map area contains a fatigue crack in a nickel superalloy.

Local Orientation Variations
Local orientation variations that can be observed in OIM™ can
impact crack propagation. Local orientation variations are
indicative of built up residual strain in the material. These may
be areas where crack initiation may occur. Figure 4 shows local
orientation variations emanating from a fatigue crack tip in a
nickel alloy. The variations are quite large within individual
grains – as high as 60°. OIM™ is well suited for studying these
local orientation gradients because of its angular resolution.

Note
It is important to remember that the OIM™ results shown here
are all performed on two-dimensional planar surfaces. Of
course, cracking is a three-dimensional phenomenon and thus
three-dimensional analyses would need to be performed in
order to get a complete picture of crack propagation and/or the
strain fields surrounding a crack tip.

Figure 4. Local misorientation map near a crack tip in steel. The small ovals
are associated with second phase particles.

Conclusion
As cracking often appears to propagate along specific
crystallographic planes in crystalline materials, OIM™ is
well suited to the study of the many different aspect of
cracking.
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